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ABSTRACT

Many papers, textbooks and the leading CAD packages
state that a Two-Port is stable if and only if K>1 and |A |<1 (or
an equivalent set of conditions). The stipulation that the state-
ment is rigorous only if no poles of the unloaded circuit lie in
the right half plane seems lost on current microwave designers
who rely on K and |As| for determining the stability of their de-
signs. Examples showing oscillating circuits with K>1 and
|As|<1 are shown. The role of K as well as methods for diagnos-
ing circuit stability are discussed.

INTRODUCTION

A dichotomy exists between the approaches of microwave
engineers and control engineers to circuit design.

Microwave designers rely heavily on the so-called stability
factor K in ascertaining the stability of their designs. Several
variants of sets of conditions exist in the literature. All these
sets of conditions, which were derived by steady state analyses,
have been shown to be equivalent [1-7]. Many textbooks [8-10]
and the leading software packages make the following or equiv-
alent statement: A Two-Port is unconditionaly stable if and only
if, for all frequencies w, K>1 and alternatively IAS|<1 or B1>0
or 1-ls,? > s 8, | for i=1,2 where:

K = (1-ls;y P-ls,, P+A P)121s s
B, = 1+is;, 1A,
and A=s; 8,858, isthe determinant of the S-parameters
matrix. The same conditions can be stated in terms of other cir-
cuit parameters such as Z, Y, H etc. where k takes the invariant
form:

21l /

K = {2Re(y; )Re(V,,) - Re(¥y,7,)} / vy
and absolute stability is claimed if and only if Re(yll) >0,
Re(y,,) >0 and K>1.

Control engineers, on the other hand, are faced with the task
of designing circuits which are quick to respond to any perturba-
tion. To this end they concentrate on the transient responses of
their circuits and make sure that their designs do not contain
any poles of S = 6 + jw which lie in the right half of the plane
Lewith ¢ >0, Asis well known, the poles of any circuit give
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rise to transient time responses of the form tne"tsinwot which
appear at all the nodes of circuit and which die out in time, if
and only if 6<0. The poles of the circuit are given by the roots
of the determinant of the matrix which fully describes the cir-
cuit’s behavior. Either direct computer solutions of the determi-
nants or polar plots in the complex plane of properly defined
functions which are related to the determinants (such as
Nyquist’s [11] plots) can be used to ascertain the location of the
roots.

As it turns out, the approach undertaken by the microwave
designers with its reliance on K is severly limited in many cases.
The limitation is that the analysis does not hold in general, and
fails in many cases, if the unloaded circuits under investigation
contain poles with positive real parts, i.e. poles in the right half
plane. Although the limitation of using steady state analysis in

investigating the stability of Two-Ports has been recognized in
Rollett’s [4] paper, he does not emphasize it and mentions it

only in passing. More importantly, it has been completely ne-
glected by more recent publications, textbooks and software
vendors and forgotten by microwave designers.

A proper statement of the Two-Port stability criteria involv-
ing K should be: An unloaded Two-port which has no poles in
the RHP will remain stable when loaded externally at its
input and output if and only if K>1 and IASI <] for all w. The
role of using K in determining the stability of Two-Ports is seen
to be quite diminished. It is limited to the investigation of load-
ing which does not cause stable unloaded circuits to become un-
stable. The stability of the open circuit has to be ascertained by
other means.

It is interesting to note that the design problem addressed by
K and |A | is similar to the original control problem addressed by
Nyquist [11]. In both cases answers are sought to the problem
of determining the conditions under which individually stable
circuits can be connected to create more complex stable circuits.
In the control case it was the closing of the open loop to create
feedback and in the Two-Port amplifier case it is the permissible
terminals loading. In both cases the stability of the starting com-
ponents has to be ascertained by other methods.
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Two examples will be given to illustrate the limited role of
K in determining the stability of microwave circuits. The first
example is of an amplifier circuit which was designed and man-
ufactured in MMIC form and the other is a simple study model
of a ring oscillator. Both circuits fullfilled all the conditions of
K>1 and 1A <1 for all & but nevertheless exhibit strong micro-
wave oscillations.

AMPLIFIER WITH STRONG MICROWAVE
OSCILLATIONS

The schematic diagram of the amplifier is shown in Figure 1.

1t is a wide band power amplifier composed of two reactively
matched 2-stage cascades in parallel. The topology of the de-
sign is similar to that presented recently by Freitag [12] who ob-
served that certain so-called odd mode instabilities cannot be
predicted by K. His method of analysis of these oscillations, al-
though very elegant, is not general enough since it is limited to
symmetric cases. We found that strong oscillations can exist
even when the circuit is highly non symmetric by applying un-

equal biases to the devices.
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Figure 1. Topology of 2-Stage Wide Band Power Amplifier.

A spectrum analyzer photograph of the strong microwave
oscillations with a fundamental at ~8 GHz is shown in Figure
2a. Figure 2b shows k and IASI vs. frequency which were calcu-
lated from our circuit design file when the devices are biased
symmetrically. The figure shows that K>1 and |A [<1 for all c.
Verification of the predictability of the oscillations is shown by
the return ratio [13,14] calculations around each FET shown in
Figure 3. Instabilities arising from a pole in the RHP are pre-
dicted if the frequency polar locus of the return ratio encircles
the point -1 or alternatively, if the magnitude of the return ratio
is greater than 1 while the phase passes through 180°. Any
modelling inaccuracies arising from the transfer of the design to
MMIC form do not affect our conclusion about the failure of K
to predict the instabilities since a single design file was used for
the curves of Figures 2 and 3. Non symmetric biasing gave rise
to very similar results and conclusions regarding K.

The return ratio plot is very similar to Nyquist’s plot and is a
particular implementation of complex plane contouring of a

function related to the system determinant alluded to in the in-
troduction. A more general method for the detection of poles in
the RHP which involves another function related to the system
determinant is shown in the next circuit example.
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S-Parameter Analysis of Wide Band Amplifier
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Figure 2. () Oscillations and (b) K and |A | of Wide Band
Power Amplifier

RING OSCILLATOR

The second circuit example with the chosen element values
is shown schematically in Figure 4. It is a very simple model of
aring oscillator which oscillates at ~1.43 GHz. A plot of K and
[A,] vs. frequency shown in Figure 5 indicates that k>1 and
|A|<1 at all frequencies for the element values shown in Figure
4. The circuit is nevertheless highly unstable as indicated by a
direct solution of the determinant of the 4X4 Y matrix which
fully describes this circuit. The solution reveals the existence of
two complex conjugate poles at the RHP locations of ~ (4,94 *
8.97)10°. The three other simple poles, -266.3x10°, -43.2x10°
and -2.58x10° are located in the LHP.

Another direct indication of the instability of the circuit can
be obtained by a polar plot of a suitably chosen function of the
system determinant. It is well known from complex function
theory that for any given F (x+jy) in the complex plane, and a
closed contour in that plane which encircles N_poles and N,
zeroes, that N=N _-N , Where N is the number of times the
polar plot of F(x+jy) encircles the origin. For our purpose, we
choose the particular closed contour in the o,w plane which is
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Figure 3. Polar and Rectangular Plots of Return Ratios Predicting Instabilities in Wide Band Power
Amplifier Biased at Vds=4V, Vgs=-0.2V. (a) 800um FETs (b) 1.2mm FET's
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Figure 4. Schematic Diagram and Element Values of Ring
Oscillator

comprised of the entire imaginary axis and the returning semi-
circle of infinite radius joining +jw and =jw. Since the response
of any physically realizable circuit decays at w~e° and ¢ ~,
no contribution arises from the returning semicircle, and there-
fore, the number of poles minus the number of zeroes N_- N,
which lie in the RHP can be determined from calculations along
the w axis alone. The values of the determinantal function at
=10 will be identical and its contour will be a closed one.

A properly chosen function of the determinant for plotting is
a function which introduces no poles or zeroes in the RHP and
which enables easy determination of the number of origin encir-
clements. Such a function is A /A, where A, is the determinant
A with the active elements eliminated. A polar plot of the nor-
malized 4x4 Y-matrix determinant is shown in Figure 6a. The
two encirclements of the origin correspond to the two roots in
the RHP calculated numerically.

The same method can be generalized to circuits which in-
clude any number of active elements. Either the determinant of
the full n-node network or a determinant of a properly reduced
m-nodes (where m<n) can be chosen for contouring or numeri-
cal solution.

The original network can be reduced by eliminating subnet-
works provided they contain only passive circuit elements. The
elimination procedure is based on the mathematical identity

| AlB |
det | | =det |A-BD'C| xdet|D|
| CID |
where A, B, C, and D are submatrices of the network. The fuil
network is represented by A, B, C, and D, the eliminated subnet-
work is D, and the remaining subnetwork to be examined is
A-BD’'C.
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Figure 5. K and 1Al of Ring Oscillator between Nodes 1 and 2
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Figure 6. Contour Plots of Normalized Y Determinants of Ring Oscillator. (a) 4-Port Determinant.

(b) 2-Port Determinant between Nodes 1 and 2.

In the case of networks which contain three terminal devices

such as FETs, HBTSs etc. that do not share common nodes, the
minimum sized subnetworks which have to be examined for

RHP zeroes, are of dimensions 3xn where n is the number of ac-
tive devices. Any further reduction may introduce unresolvable
unknowns as shown in the contour plot of Figure 6b. The figure
shows a contour plot of the determinant of the Two-Port be-
tween nodes 1 and 2 which clearly does not encircle the origin.
The reason for the apparent discrepancy is that the reduction
prodedure creates a Two-Port determinant with unknown num-
ber of poles and zeroes in the RHP. This determinant can be
shown to be equal to Ay, / A 5, where A, is the original 4-
Port determinant and A, , is the determinant of the eliminated
Two-Port between nodes 3 and 4. Since A,, contains active ele-
ments, it may in general, and actually does so in our case, con-
tain zeroes in the RHP. :

The method of contour plotting of functions of w is very
valuable even in todays environment where computers are avail-
able for solving circuit determinants. In large networks, espe-
cially ones which contain distributed elements, it can provide a
quick answer to the question of the network’s stability without
resort to root solving methods in the complex s plane which are
not readily available and are much more difficult to use.
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