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ABSTRACT

Many papers, textbooks and the leading CAD packages

state that a Two-Port is stable if and only if K> 1 and lA~l<1 (or

an equivalent set of conditions). The stipulation that the state-

ment is rigorous only if no poles of the unloaded circuit lie in

the right half plane seems lost on current microwave designers

who rely on K and @I for determining the stability of their de-

signs. Examples showing oscillating circuits with K> 1 and

@.lcl are shown. The role of K as well as methods for diagnos-

ing circuit stability are discussed.

INTRODUCTION

A dichotomy exists between the approaches of microwave

engineers and control engineers to circuit design.

Microwave designers rely heavily on the so-called stability

factor Kin ascertaining the stability of their designs. Several

variants of sets of conditions exist in the literature. All these

sets of conditions, which were derived by steady state analyses,

have been shown to be equivalent [1-7]. Many textbooks [8-10]

and the leading software packages make the following or equiv-

alent statement A Two-Port is unconditional stable if and only

if, for all frequencies w, K>l and alternatively IA,Ic1 or BI>O

or 1-Is,,12 > Is. JJ-, I for i=l,2 where

B1 = l+lsll j’-&21~-lA,l~
I

and A~=sl ~S22-S12S21 is the determinant of the S-parameters

matrix. The same conditions can be stated in terms of other cir-

cuit parameters such as Z, Y, H etc. where k takes the invariant

form

K = {2Re(y1JWY22) - RtiY12Y21)} J 1Y12YM1

and absolute stability is claimed if and only if Re(yl, ) >0,--
Re(y22) >0 and K>l.

Control engineers, on the other hand, are faced with the task

of designing circuits which are quick to respond to any perturba-

tion. To this end they concentrate on the transient responses of

their circuits and make sw that their designs do not contain
any poles of S = o + jco which lie in the right half of the plane

i.e with 0>0. As is well known, the poles of any circuit give

rise to transient time responses of the form t?e%imoot which

appear at all the nodes of circuit and which die out in time, if

and only if is<O. The poles of the circuit are given by the roots

of the determinant of the matrix which filly describes the cir-

cuit’s behavior. Either direct computer solutions of the determi-

nants or polar plots in the complex plane of properly defiied

functions which are related to the determinants (such as

Nyquist’s[11] plots) can be used to ascertain the location of the

roots.

As it turns out, the approach undertaken by the microwave

designem with its reliance on K is severly limited in many cases.

The limitation is that the analysis does not hold in general, and

fails in many cases, if the unloaded circuits under investigation

contain poles with positive real parts, i.e. poles in the right half

plane. Although the limitation of using steady state analysis in

investigating the stability of Two-Ports has been recognized in
Rollett’s [4] paper, he does not emphasize it and mentions it

only in passing. More importantly, it has been completely ne-

glected by more nzmt publications, textbooks and software

vendors and forgotten by microwave designers.

A proper statement of the Two-Port stability criteria involv-

ing K should be An unloaded Two-poti which has no poles in

the KHP will remiu”n stile when loaded externally at its

input and output if and only if K>l and IA$I c1 for all cu. The

role of using K in determining the stability of Two-Ports is seen

to be quite diminished. It is limited to the investigation of load-

ing which does not cause stable unloaded circuits to become un-

stable. The stability of the open circuit has to be ascertained by

other means.

It is interesting to note that the design problem addressed by

K and @J is similar to the original control problem addressed by

Nyquist [1 1]. In both cases answers are sought to the problem

of determining g the conditions under which individually stable

circuits can be connected to create more complex stable circuits.

In the control case it was the closing of the open loop to create

feedback and in the Two-Port amplitler case it is the permissible

terminals loading. In both cases the stability of the starting com-

ponents has to be ascertained by other methods.
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Two examples will be given to illustrate the limited role of

Kin determining the stability of microwave circuits. The fit

example is of an amptiler circuit which was designed and man-

ufactured in MMIC form and the other is a simple study model

of a ring oscillator. Both circuits fullfiied all the conditions of

K>l and lA~l <1 for all w but nevertheless exhibit strong micro-

wave oscillations.

-LIFIER WITH STRONG MICROWAVE

OSCILLATIONS

The schematic diagram of the amplit3er is shown in Figure 1.

It is a wide band power amplifier composed of two reactively

matched 2-stage cascades in parallel. The topology of the de-

sign is similar to that presented recently by Freitag [12] who ob-

served that certain so-called odd mode instabilities cannot be

predicted by K. His method of analysis of these oscillations, al-

though very elegant, is not general enough since it is limited to

symmetric cases. We found that strong oscillations can exist

even when the circuit is highly non symmetric by applying un-

equal biases to the devices.
PBN-93 -441
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Figure 1. Topology of 2-Stage Wide Band Power Amplitler.

A spectrum analyzer photograph of the strong microwave

oscillations with a fundamental at -8 GHz is shown in Figure

2a. Figure 2b shows k and IA,l vs. frequency which were calcu-

lated from our circuit design file when the devices are biased

symmetrically. The figure shows that K> 1 and lA#l for all co.

Ve%lcation of the predictability of the oscillations is shown by

the return ratio [13,14] calculations around each FET shown in

Figure 3. Instabilitia arising from a pole in the RHP are pre-

dicted if the frequency polar locus of the return ratio encircles

the point -1 or alternatively, if the magnitude of the return ratio

is greater than 1 while the phase passes through 180°. Any

modelling inaccuracies arising from the transfer of the design to

MMIC form do not affect our conclusion about the failure of K

to predict the instabilities since a single design file was used for

the curves of Figures 2 and 3. Non symmetric biasing gave rise

to very similar results and conclusions regarding K.

The return ratio plot is very similar to Nyquist’s plot and is a
particular implementation of complex plane contouring of a

function related to the system determinant alluded to in the in-

troduction. A more general method for the det=tion of poles in

the RHP which involves another function related to the system

determinant is shown in the next circuit example.

(a)

42

S-Parameter Analysis of Wide Band Amplifier

Vds=4V Vgs=-O.2V
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Figure 2. (a) Oscillations and (b) K and IA,] of Wide Band

Power AmpWler

RING OSCILLATOR

The second circuit example with the chosen element values

is shown schematically in Figure 4. It is a very simple model of

a ring oscillator which oscillates at -1.43 GHz. A plot of K and

IAJ vs. frequency shown in Figure 5 indicates that k>l and

IAJ<l at all frequencies for the element values shown in Figure

4. The circuit is nevertheless highly unstable as indicated by a

direct solution of the determinant of the 4X4 Y matrix which

fully describes this circuit. The solution reveals the existence of

two complex conjugate poles at the RHP locations of- (4,!34 t

j8.97)109. The three other simple poles, -266.3x109, -43.2x109

and -2.58x109 are located in the LHP.

Another direct indication of the instability of the circuit can

be obtained by a polar plot of a suitably chosen function of the

system determinant. It is well known from complex function

theory that for any given F (x+jy) in the complex plane, and a

closed contour in that plane which encircles NP poles and N

zeroes, that N = NP - N= where N is the number of times the=

polar plot of F(x+jy) encircles the origin. For our purpose, we

choose the particular closed contour in the O,OJplane which is
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Figure 4. Schematic Diagram and Element Values of Ring

Oscillator

comprised of the entire imaginary axis and the returning semi-

circle of infiite radius joining +jw and =jw. Since the response

of any physically realizable circuit decays at CO-COand 0 --,

no contribution arises from the returning semicircle, and there-

fore, the number of poles minus the number of zeroes NP -N=

which lie in the RHP can be determined from calculations along
the w axis rdone. The values of the determinantal function at

CO=&mwill be identical and its contour will be a closed one.

A properly chosen function of the determinant for plotting is

a function which introduces no poles or zeroes in the RHP and

which enables easy determination of the number of origin encir-

clements. Such a function is A / ~ where ~ is the determinant

A with the active elements eliminated. A polar plot of the nor-

malized 4x4 Y-matrix determinant is shown in Figure 6a. The

two encirclements of the origin correspond to the two roots in

the RHP calculated numerically.

The same method can be generalized to circuits which in-

clude any number of active elements. Either the determinant of

the full n-node network or a determinant of a properly reduced

m-nodes (where men) can be chosen for contouring or numeri-

cal solution.

The original network can be reduced by eliminating subnet-

works provided they contain only passive circuit elements. The

elimination procedure is based on the mathematical identity

IAIBI

det 1 --------- I = det I A-BD-lC I x det I D I

ICID I

where A, B, C, and D are submatrices of the network. The full

network is represented by A, B, C, and D, the eliminated subnet-

work is D, and the remaining subnetwork to be examined is

A-BD-lC.
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Figure 5. K and IAel of Ring Oscillator between Nodes 1 and 2
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Figure 6. Contour Plots of Normalized Y Determinants of Ring Oscillator. (a) 4-Port Determinant.

(b) 2-Port Determinant between Nodes 1 and 2.

In the case of networks which contain three terminal devices

such as F33Ts, HBTs etc. that do not share common nodes, the
minimum sized subnetworks which have to be examined for

RHP zeroes, are of dimensions 3xn where n is the number of ac-

tive devices. Any further Auction may introduce unresolvable

unknowns as shown in the contour plot of Figure 6b. The figure

shows a contour plot of the determinant of the Two-Port be-

tween nodea 1 and 2 which clearly does not encircle the origin.

The reason for the apparent discrepancy is that the reduction

prodedure createa a Two-Port determinant with unknown num-

ber of poles and zeroes in the RHP. This determinant can be

shown to be equal to A4X4 I A 34 where A4X4 is the original 4-

Port determinant and 44 is the determinant of the eliminated

Two-Port between nodes 3 and 4. Since %4 contains active ele-

ments, it may in general, and actually does so in our case, con-

tain zeroes in the RHP.

The method of contour plotting of functions’ of co is very

valuable even in todays environment where computers are avail-

able for solving circuit determinants. In large networks, espe-

cially ones which contain distributed elements, it can provide a

quick answer to the question of the network’s stability without

resort to root solving methods in the complexs plane which are

not readily available and are much more difficult to use.
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